二维稳态导热数值计算,matlab
877777t(温度)
666660..6L2L1
二维稳态导热数值计算,matlab
A0=[S(:,61)]; for k=1:81
B1(k)=A0(81-k+1); end
B1 %x=L1/2时y方向的温度
A1=[S(41,:)] %y=L2/2时x方向的温度 x=0:0.005:0.6; y=0:0.005:0.4;
A2=60+20*sin(pi*x/0.6)*((exp(pi*0.2/0.6)-exp(-pi*0.2/0.6))/2)/((exp(pi*0.4/0.6)-exp(-pi*0.4/0.6))/2) %计算y=L2/2时x方向的解析温度
B2=60+20*sin(pi*0.3/0.6)*((exp(pi*y/0.6)-exp(-pi*y/0.6))/2)/((exp(pi*0.4/0.6)-exp(-pi*0.4/0.6))/2) %计算x=L1/2时y方向的解析温度 figure(2)
subplot(2,2,1);
plot(x,A1,'g-.',x,A2,'k:x'); %画出x=L1/2时y方向的温度场、画出x=L1/2时y方向的解析温度场曲线
xlabel('L1');ylabel('t温度'); title('y=L2/2');
legend('数值解','解析解'); subplot(2,2,2);
plot(x,A1-A2); %画出具体温度场与解析温度场的差值曲线 xlabel('L1');ylabel('差值');
title('y=L2/2时,比较=数值解-解析解'); subplot(2,2,3);
plot(y,B1,'g-.',y,B2,'k:x'); %画出y=L2/2时x方向的温度场、画出y=L2/2时x方向的解析温度场曲线
xlabel('L2');ylabel('t温度'); title('x=L1/2');
legend('数值解','解析解'); subplot(2,2,4);
plot(y,B1-B2); %画出具体温度场与解析温度场的差值曲线 xlabel('L2');ylabel('差值');
title('x=L1/2时,比较=数值解-解析解');
y=L2/2时x方向的温度:
60 60.1635347276130 60.3269574318083 60.4901561107239 60.6530189159961 60.8154342294146 60.9772907394204 61.1384775173935 61.2988840936779 61.4584005332920 61.6169175112734 61.7743263876045 61.9305192816696 62.0853891461909 62.2388298405943 62.3907362037523 62.5410041260577 62.6895306207746 62.8362138946214 62.9809534175351 63.1236499915702 63.2642058188844 63.4025245687647 63.5385114436490 63.6720732440951 63.8031184326565 63.9315571966177 64.0573015095482 64.1802651916318 64.3003639687311 64.4175155301449 64.5316395850212 64.6426579173846 64.7504944397430 64.8550752452343 64.9563286582797 65.0541852837075
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说教育文库哈工程传热学数值计算大作业(3)在线全文阅读。
相关推荐: