77范文网 - 专业文章范例文档资料分享平台

博迪第八版投资学第十章课后习题答案(10)

来源:网络收集 时间:2021-04-05 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:或QQ: 处理(尽可能给您提供完整文档),感谢您的支持与谅解。点击这里给我发消息

可编辑

13. The maximum residual variance is tied to the number of securities (n)

in the portfolio because, as we increase the number of securities, we

are more likely to encounter securities with larger residual variances.

The starting point is to determine the practical limit on the portfolio residual standard deviation, (e P), that still qualifies as a ‘well-

diversified portfolio.’ A reasonable approach is to compare 2(e P) to the market variance, or equivalently, to compare (e P) to the market

standard deviation. Suppose we do not allow (e P) to exceed p M, where p is a small decimal fraction, for example, 0.05; then, the smaller the value we choose for p, the more stringent our criterion for defining

how diversified a ‘well-diversified’ portfolio must be.

Now construct a portfolio of n securities with weights w1, w2,…,w n, so

that w i =1. The portfolio residual variance is: 2(e P ) = w122(e i)

To meet our practical definition of sufficiently diversified, we

require this residual variance to be less than (p M)2. A sure and

simple way to proceed is to assume the worst, that is, assume that the residual variance of each security is the highest possible value

allowed under the assumptions of the problem: 2(e i) = n2M

In that case: 2(e P ) = w i2n M2

Now apply the constraint: w i2 n M2 ≤ (p M)2

This requires that: n w i2≤ p2

Or, equivalently, that: w i2 ≤ p2/n

A relatively easy way to generate a set of well-diversified portfolios is

to use portfolio weights that follow a geometric progression, since the computations then become relatively straightforward. Choose w1 and a

common factor q for the geometric progression such that q < 1. Therefore, the weight on each stock is a fraction q of the weight on the previous stock in the series. Then the sum of n terms is:

w i= w1(1– q n)/(1– q) = 1

or: w1 = (1– q)/(1–q n)

The sum of the n squared weights is similarly obtained from w12 and a

common geometric progression factor of q2. Therefore:

w i2 = w12(1– q2n)/(1– q 2)

Substituting for w1 from above, we obtain:

w i2 = [(1– q)2/(1–q n)2] × [(1– q2n)/(1– q 2)]

精品文档,欢迎下载

百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说教育文库博迪第八版投资学第十章课后习题答案(10)在线全文阅读。

博迪第八版投资学第十章课后习题答案(10).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印 下载失败或者文档不完整,请联系客服人员解决!
本文链接:https://www.77cn.com.cn/wenku/jiaoyu/1204288.html(转载请注明文章来源)
上一篇:期末补考项目卷
下一篇:芸苔素内酯
Copyright © 2008-2022 免费范文网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ: 邮箱:tiandhx2@hotmail.com
苏ICP备16052595号-18
× 注册会员免费下载(下载后可以自由复制和排版)
注册会员下载
全站内容免费自由复制
注册会员下载
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: