,--------------------------------------------------------------------(12分) ?BC?2.372(千米)
由于2.372?2.4,所以两位登山爱好者能够在2个小时内徒步登上山峰.---(14分) 21.(本题满分14分;第(1)小题6分,第(2)小题8分)
解:(1)设椭圆的短半轴为b,半焦距为c,
a2a2a222222?, 则b?,由c?a?b得c?a?2222x2y2122??1. ----------(6分) 由?b?2c?4解得a?8,b?4,则椭圆方程为
284?y?k(x?1)(2)由?2得(2k2?1)x2?4k2x?2k2?8?0, 2?x?2y?84k22k2?8,x1x2?2, 设A(x1,y1),B(x2,y2),由韦达定理得:x1?x2?2k2?12k?1?MA?MB?(x1?m,y1)?(x2?m,y2)?x1x2?m(x1?x2)?m2?k2(x1?1)(x2?1)
=(k2?1)x1x2?(m?k2)(x1?x2)?k2?m2
2k2?84k2?5?4m?k?8?m2,----------------(10222?(m?k)?k?m=(k?1)=?2k2?12k2?12k2?122分)
当5?4m?16,即m?71111时,MA?MB??为定值,所以,存在点M(,0)
1644使得MA?MB为定值(14分).
22.(本题满分16分;第(1)小题4分,第(2)小题5分,第(3)小题7分) 解:(1)
f?x??x???1?x?x?Z?,
x?2?f?x?2??f?x????x?2????1?? 所以函数f?x??x???1?x???x???1?x??2,(非零常数) ????x?Z?是广义周期函数,它的周距为2.-----(4分)
(2)设g?x??kx?b?k?0?,则f?x??kx?b?Asin??x???
2??f?x??????f?x? ?2???k?x?????2???b?Asin?x?????????2k?? ???kx?b?Asin?x?????????????? 6 / 8
(非零常数) 所以f?x?是广义周期函数,且T?(3)
2??,M?2k??.-----------------( 9分)
f?x?2??f?x???2?x?2??g?x?2??2x?g?x???4,
所以f?x?是广义周期函数,且T?2,M??4 .------------------------------------------(10分) 设x1,x2??1,3?满足f?x1???3,f?x2??3, 由f?x?2??f?x??4得:
f?x1?6??f?x1?4??4?f?x1?2??4?4?f?x1??4?4?4??3?12??15,
又
f?x?2??f?x??4?f?x?知道f?x?在区间??9,9?上的最小值是x在?7,9?上获得
的,而x1?6??7,9?,所以f?x?在??9,9?上的最小值为?15.--------------------( 13分) 由f?x?2??f?x??4得f?x?2??f?x??4得:
f?x2?10??f?x2?8??4?f?x2?6??4?4?又
?f?x2??20?23,
f?x?2??f?x??4?f?x?知道f?x?在区间??9,9?上的最大值是x在??9,?7?上
获得的,
而x2?10???9,?7?,所以f?x?在??9,9?上的最大值为23.-----------------------(16分) 23.(本题满分18分;第(1)小题3分,第(2)小题9分,第(3)小题6分.) 解:(1)f?2,j??f?1,j??f?1,j?1??2f?1,j??4?8j?4?j?1,2,,n?1?
,n?2?f?3,j??f?2,j??f?2,j?1??2f?2,j??8?2?8j?4??8?16j?16?j?1,2,.--------------------------------------------------------------------------------------------------------(3分)
(2)由已知,第一行是等差数列,假设第i?1?i?n?3?行是以di为公差的等差数列, 则由
f?i?1,j?1??f?i?1,j????f?i,j?1??f?i,j?2??????f?i,j??f?i,j?1???
?f?i,j?2??f?i,j??2di(常数)知第i?1?1?i?n?3?行的数也依次成等差数列,且
其公差为2di.综上可得,数表中除最后2行以外每一行都成等差数列;------------(7分) 由于d1?4,di?2di?1?i?2?,所以di?4?2i?1?2i?1,所以
f(i,1)?f(i?1,1)?f(i?1,2)?2f(i?1,1)?di?1,由di?1?2i,
7 / 8
得f?i,1??2f(i?1,1)?2i, (9分)
f?i,1?f?i?1,1???1 , 于是
2i2i?1?f?i,1??f?i,1?f?i?1,1?f?1,1?4??1,又因为??2,所以,数列?i?是以2为首项,即
2i2i?1212?2?1为公差的等差数列, 所以,(i?1,2,f?i,1?i?2??i?1??i?1,所以f?i,1???i?1??2i2. (12分) ,n)
(3)f?i,1???i?1??ai?1??ai?f?i,1??1?2i?1 , i?1?bi?111?11??i?1???, i?ii?1iaiai?1?2?1??2?1?2?2?12?1?1?11?i11,-----------------(14分) ??2????2i?2i?12i?1?1?2i?12i?1?1111?1?1?.??n?n?1???n?1?2?12?1?32?13令g(i)?2i?big(i)?1??11??1?Sn???2????2??3?2?12?1??2?12?1? ---------------------------------------------------------------------------------------------------------(15分)
11111?3m?n?1?m?n?1??m?, 32?12?1331?11?m??,??0?1?3m?,
4?43?3?3??2n?1?1??n?log2??1??1,
1?3m?1?3m?Sn?m?令??log2??3??1?,则当n??时,都有Sn?m,
?1?3m??适合题设的一个等比数列为g(i)?2i.-------------------------------------------------------(18分)
8 / 8
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说教育文库上海华师大二附中2015届高三暑期数学练习卷(六)(2)在线全文阅读。
相关推荐: