(3)传统的用来描述用户行为特征的度量一般是凭感觉和经验的,这些度量是否能有效地描述用户行为很难估计。有些度量当考虑所有用户可能是无效的,但当考虑某些特别的用户时,可能又非常有用。
2. 神经网络在入侵检测中的应用
作为人工智能(AD)的一个重要分支,神经网络在入侵检测领域得到了很好的应用。神经网络技术在入侵检测系统中用来构造分类器,主要用于资料特征的分析,以发现是否为一种入侵行为。如果是一种入侵行为,系统将与已知入侵行为的特征进行比较,判断是否为一种新的攻击行为,从而决定是进行丢弃还是进行存盘、报警、发送资料特征等工作。神经网络在入侵检测中的具体实现方法一般有两种:
(1)系统或模式匹配系统合并在一起
这种方法不是像以前一样在异常检测中用神经网络代替现有的统计分析部分,而是用神经网络来过滤出数据当中的可疑事件,并把这些事件转交给专家系统处理。这种结构可以通过减少专家系统的误报来提高检测系统的效用。因为神经网络将确定某一特别事件具有攻击迹象的概率,我们就可以确定一个闽值来决定事件是否转交给专家系统作进一步分析,这样一来,由于专家系统只接收可疑事件的数据,它的灵敏度就会大大增加(通常,专家系统以牺牲灵敏度来减少误报率)。这种结构对那些投资专家系统技术的机构大有好处,因为它提高了系统的效用,同时还保护了在现有IDS上的投资。
(2)网络作为一个独立的特征检测系统
在这个结构中,神经网络从网络流中接受数据,并对数据进行分析。任何被识别为带有攻击迹象的事件都将被转交给安全管理员或自动入侵应答系统来处理。这种方法在速度方面超过了以前的方法,因为它只有一个单独的分析层。另外,随着神经网络对攻击特征的学习,这种结构的效用也会不断提高,它不同于第一种方法,不会受专家系统分析能力的限制,而最终将超越专家系统基于规则的种种限制。
参考文献:
[1]韩东海、王超、李群,入侵检测系统及实例剖析.北京:清华大学出版社,2008.
[2]韩力群,人工神经网络理论、设计及应用—人工神经细胞、人工神经网络和人工神经系统.北京:化学工业出版社,2007.
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说计算机论神经系统网络在入侵检测系统的应用(2)在线全文阅读。