77范文网 - 专业文章范例文档资料分享平台

基于模糊理论的图像分割算法研究(一)

来源:网络收集 时间:2012-08-21 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:或QQ: 处理(尽可能给您提供完整文档),感谢您的支持与谅解。点击这里给我发消息

  论文关键词: 图像分割 边缘检测  模糊理论 遗传算法 Matlab  

  论文摘要:分割的目的是将图像划分为不同区域。图像分割算法一般是基于亮度值的两个基本特性之一:不连续性和相似性。第一类性质的已用途径是基于亮度的不连续变化分割图像,比如图像的边缘。第二类的主要应用途径是依据事先制订的准则将图像分割为相似的区域。门限处理、区域生长、区域分离和聚合都是这类方法的实例。遗传算法具有简单、鲁棒性好和本质并行的突出优点。其在应用领域取得的巨大成功,引起了广大学者的关注。在图像分割领域,遗传算法常用来帮助确定分割阈值。

  本文介绍讨论了几种目前广泛应用的图像边缘检测、图像阈值分割的各种算法,并给出了对比分析;对遗传算法的基本概念和研究进展进行了综述;给出了标准遗传算法的原理、过程、实验结果及分析. 实验结果表明,本文提出的遗传分割算法优于传统分割算法。


  第一章 绪论 1.1  图像分割综述
  图像分割就是指把图像分成各具特性的区域并提取出感兴趣目标的技术和过程。这里所说的特性可以是灰度、颜色、纹理等,而目标可以对应单个区域,也可以对应多个区域。图像分割是数字图像处理中的一项关键技术,它使得其后的图像分析,识别等高级处理阶段所要处理的数据量大大减少,同时又保留有关图像结构特征的信息。而且,在数字图像处理工程中,一方面,图像分割是目标表达的基础,对特征测量有重要的影响;另一方面,图像分割是自动目标识别的关键步骤,图像分割及其基于分割的目标表达、特征提取和参数测量等将原始图像转化为更抽象更紧凑的形式,分割中出现的误差会传播至高层次处理阶段,因此分割的精确程度是至关重要的。只有通过细致精细的图像分割,才能使得更高层的图像分析和理解成为可能。因此,图像分割是由图像处理进到图像分析的关键步骤,在图像工程中占据重要的位置。

1.2  图像分割的研究意义与发展现状
作为计算机视觉和图像处理中的难点和热点之一,图像分割的研究受到了研究工作者的高度重视,对图像分割进行了深入、广泛的研究。作为一种重要的图像技术,图像分割在不同领域中有时也用其它名称:如目标轮廓(object delineation)技术,阈值化(thresholding)技术,图像区分或求差(image discrimination)技术,目标检测(target detection)技术,目标识别(target recognition)技术,目标跟踪(target tracking)技术等,但这些技术本身或其核心实际上也就是图像分割技术。图像分割作为图像处理、分析的一项基本内容,其应用非常广泛,几乎出现在有关图像处理的所有领域,并涉及各种类型的图像。在工业自动化、在线产品检验、生产程控、文件图像处理、遥感图像、保安监视、以及军事、体育、农业等行业和工程中,图像分割都有着广泛的应用。例如:在遥感图像中,合成孔径雷达图像中目标的分割、遥感云图中不同云系和背景分布的分割等;在医学应用中,脑部 MR 图像分割成灰质(GM)、白质(WM)、脑脊髓(CSF)等脑组织和其它脑组织区域(NB)等;在交通图像分析中,把车辆目标从背景中分割出来等;在面向对象的图像压缩和基于内容的图像检索中将图像分割成不同的对象区域等。在各种图像应用中,只要需对图像目标进行提取,测量等都离不开图像分割。

自 20 世纪 70 年代至今,已提出上千种各种类型的分割算法。如:门限法、匹配法、区域生长法、分裂-合并法、水线法、马尔可夫随机场模型法、多尺度法、小波分析法、数学形态学等。随着新理论、新技术的发展,一些新的图像分割方法也随之出现,但这些分割算法都是针对某一类型图像、某一具体的应用问题而提出的,并没有一种适合所有图像的通用分割算法。通用方法和策略仍面临着巨大的困难。另外,还没有制定出选择适用分割算法的标准,这给图像分割技术的应用带来许多实际问题。

百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说计算机基于模糊理论的图像分割算法研究(一)在线全文阅读。

基于模糊理论的图像分割算法研究(一).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印 下载失败或者文档不完整,请联系客服人员解决!
本文链接:https://www.77cn.com.cn/lunwen/jisuanji/120543.html(转载请注明文章来源)
Copyright © 2008-2022 免费范文网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ: 邮箱:tiandhx2@hotmail.com
苏ICP备16052595号-18
× 注册会员免费下载(下载后可以自由复制和排版)
注册会员下载
全站内容免费自由复制
注册会员下载
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: