结论1保证了每个路口的横向和纵向交通车流的平衡性,即在横向行驶和纵向行驶中做到了一种公平性,以保证每个方向的车流都能通过路口。再由假设2,道路具有“状态对称性”,即横向道路和纵向道路是对称的,所以可以将问题从考察整个道路网络转化为考察一条道路的情形。
结论2每个“B+L路段”的车流量相同。
证明:我们知道,车流量指的是单位时间内通过道路某一个截面车辆的数目。所以车流量是一个关于车辆流状态和周期T的函数,由道路网络的“状态对称性”,可以将一个“B+L路段”进行平移,其状态参量是不变的,则结论3成立。
所以最终将原来对整个网络求日平均车流量转化为对一个单向单道的“B+L路段”求日平均车流量,不妨以这个“B+L路段”中的一条停车线为计算车流量的截面。以下将建立模型并具体求解。
3模型的建立
针对一个单向单道的“B+L路段”,运用道路仿真模拟的方法,即设出每辆车的状态参量,制定出一些“行驶规则”,在计算机的环境下,让车辆流按照“行驶规则”(也就是在一些约束条件下)进行道路交通模拟,最后得出最优值。
对于一个单向单道的“B+L路段”,建立一维坐标轴 Ox,以上一个“B+L路段”的停车线为原点,车辆行驶的方向为x轴正向。设车辆数为n,此路段上的车辆流状态为X,V,A,其中X为位置分布x,x,…,x,V为速度分布v,v,…,v,A为加速度分布a,a,…,a,则对于每一个x,v,a,i=1,…,n,可以确定车i的状态,车辆流i,i=1,…,n,按位置坐标x,0<x≤B+…,从小到大依次排列,且车n一旦越过停车线(B+L位置),上一路段必有一辆与此车状态相同的车驶入此路段,即为此路段下一状态时的车1,其余各车的下标顺次加1。设在单位时间内经过停车线的车辆数为M(即车流量,单位为:辆/s),则模型为:max M(X,V,A),T,其中一些约束条件如下,T=T+T;T=T+2T;T,T,T>0。
另外,根据生活实际情况,为了保证横向行驶和纵向行驶的公平性,以及保证道路网络的畅通,则还要的约束条件如下:
(1)不允许一辆车在一个周期内,连续通过两个“十字路口”,(否则会使另一个方向上的车辆等待时间过长)则>T。
(2)车辆流状态X,V,A满足“行驶规则”(见下文)。
4模型的求解与检验分析
只要确定“B+L路段”上车辆流的初始状态,就可以具体求解。给定如下初始状态(参见[1]):设t=0为某红灯转为绿灯的时刻,此时的分布为n=n1+n2,其中n1为在路口等待的车辆数,且间距为d,其余n2辆车以速度v行驶且在剩余路段均匀分布。以下分别对不同的n(对同一个n,再取几组不同的n1,n2),在以上分布下,进行计算机模拟,得出不同情况下的车流量最大值M及对应的周期最优值T_opt,如下表:
通过分析以上数据得到:
(1)对于同一个n,其不同的初始分布得到的最大车流量M及其相应周期T_opt基本都一样,只有微小的波动。
(2)对不同的n,当n较小时,随着n的增大而增大,其后趋于稳定,最后,当n大到一定程度时,无可行解。
于是对n2=0时的不同的n求得一组值,用Matlab进行拟合得到如上图。
通过上图进一步弄清了最大车流量M随n的变化趋势:
(1)当n较小时(n<15左右),M与n近似满足线性关系。
(2)当n>25以后,M趋于平稳。
(3)当n>128以后,无可行解。
5对模型的评价及其应用
对于上述的模型有以下几点不足:在运用“行驶规则”编程时,实际上是将一个连续的过程转化为有一定时间步长的离散过程来处理,其中势必会产生误差。但这种误差还是可以接受的,而且随着硬件条件的改善和程序的改进,可以减小步长,增加模拟时间来提高精度,但同时计算机的运行时间也会相应增加。
百度搜索“77cn”或“免费范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,免费范文网,提供经典小说工学类基于计算机模拟的交通灯时间控制问题(2)在线全文阅读。